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This paper deals with the active vibration control of a simply-supported beam traversed by

a moving mass using fuzzy control. Governing equations for dynamic responses of a beam under

a moving mass are derived by Galerkin’s mode summation method, and the effect of forces

(gravity force, Coliolis force, inertia force caused by the slope of the beam, transverse inertia

force of the beam) due to the moving mass on the dynamic response of a beam is discussed. For

the active control of dynamic deflection and vibration of a beam under the moving mass, the

controller based on fuzzy logic is used and the experiments are conducted by VCM (voice coil

motor) actuator to suppress the vibration of a beam. Through the numerical and experimental

studies, the following conclusions were obtained. With increasing mass ratio y at a fixed velocity

of the moving mass under the critical velocity, the position of moving mass at the maximum

dynamic deflection moves to the right end of the beam. With increasing velocity of the moving

mass at a fixed mass ratio 7, the position of moving mass at the maximum dynamic deflection

moves to the right end of the beam too. The numerical predictions of dynamic deflection of the

beam have a good agreement with the experimental results. With the fuzzy control, more than

50% reductions of dynamic deflection and residual vibration of the tested beam under the mov-

ing mass are obtained.
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1. Introduction

The dynamic deflection and vibration control
of an elastic beam structure carrying moving masses
or loads have long been an interesting subject to
many researchers. This is one of the most impor-
tant subjects in the areas of structural dynamics
and vibration control. Bridges, railway bridges,
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cranes, cable ways, tunnels, and pipes are the ty-
pical structural examples of the structure to be
designed to support moving masses and loads.

While the analytical studies on the dynamic
behavior of a structure under moving masses and
loads have been actively performed, a small num-
ber of experimental studies, especially for the vi-
bration control of the beam structures carrying
moving masses and loads, have been conducted. It
is, therefore, strongly desired to conduct both an-
alytical and experimental studies in parallel to
develop the algorithm that controls effectively the
vibration and the dynamic response of structures
under moving masses and loads.

The dynamic responses and vibrations of struc-
tures under moving masses and loads were initial-
ly studied by Stokes who tried to solve the prob-
lem of railway bridges (Strokes, 1849 ; Ayre et al.,
1950). This type of study has been actively per-
formed by employing the finite element method
(Yoshida and Weaver, 1971). Ryu (1983) used
the finite difference method to study the dynamic
response of both the simply supported beam and
the continuous beam model carrying a moving mass
with constant velocity and acceleration. Sadiku
and Leipholz (1987) utilized the Green’s function
to present the difference of the solutions for the
moving mass problem without and with including
the inertia effect of a mass.

Olsson (1991) studied the dynamic response of
a simply supported beam traversed by a moving
object of the constant velocity without consider-
ing the inertia effect of moving mass. Esmailzadeh
and Ghorash (1992) expanded Olsson’s study by
including the inertia effect of the moving mass.
Lin (1997) suggested the effects of both centri-
fugal and coliolis forces should be taken into ac-
count to obtain the dynamic deflection.

Most studies on the dynamic response of a beam
carrying moving mass or loads are analytical, but
a small number of experimental investigations are
recently conducted in parallel. The studies on the
dynamic response of a beam caused by moving
masses or loads have been also conducted domes-
tically. For the studies on the vibration control
of moving masses or loads, Abdel Rohman and
Leipholz (1980) applied the active vibration con-
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trol method to control the beam vibration caused
by moving masses. They applied the bending mo-
ment produced by tension and compression of
an actuator to the beam when the vibration of a
simply supported beam carrying a moving mass
occurs. Unlike the active control, the passive
control approaches have been proposed in civil
engineering. Kwon et al.(1998) presented an ap-
proach to reduce the deflection of a beam under
a moving load by means of adjusting the para-
meters of a conceptually second order damped
model attached to a flexible structures.

Recently, the piezoelectric material has been
used for the active vibration control. Ryou and
his co-researchers (Ryou et al., 1997) studied the
vibration control of a beam by employing the dis-
tributed piezoelectric film sensor and the piezo-
electric ceramic actuator. They verified their sen-
sor and actuator system by observing the piezo-
electric film sensor blocked effectively the signal
from the uncontrolled modes.

Bailey and Hubbard Jr.(1985) conducted the
active vibration control on a thin cantilever beam
through the distributed piezoelectric-polymer and
designed the controller using Lyapunov’s second
and direct method. Kwak and Sciulli (1996) per-
formed experiments on the vibration suppression
control of active structures through the positive
position feedback (PPF) control using a piezo-
electric sensor and a piezoelectric actuator based
on the fuzzy logic. Recently, Sung (2002) present-
ed the modeling and control with piezo-actuators
for a simply supported beam under a moving
mass.

In this paper, the dynamic response of a simply
supported beam caused by a moving mass was in-
vestigated by Galerkin’s method and experiments.
An electromagnetic actuator was designed and
used for the fuzzy control in order to suppress
the vibration of the beam generated by a moving
mass.

2. Theoretical Analyses

2.1 Governing equation of a simply support-
ed beam traversed by a moving mass
The mathematical model of a beam traversed
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Fig. 1 A mathematical model of a simply-supported
beam subjected to a moving mass

by a moving mass is shown in Fig. 1, where / is
the length of a beam, v is the velocity of a moving
mass, £ is time, w(z,¢) is the transverse displa-
cement, z and y are the axial and the transverse
coordinates, respectively. The governing equation
of the system can be expressed as,

dw(z t) | Fwlzt) _
EI T =mg+Mgd(z—vt)
[ Pw(zt) 5, Fw(zt)
M{ P R e ] (1)
L ow (z.t) | Fw(zt) B
et }5(2 vt)

where E is Young’s modulus of elasticity, [ is
the cross-sectional area moment of inertia, m is
the mass per unit length of a beam, M is the mass
of a moving mass, and ¢ is the acceleration of
a moving mass. When the mass of a beam is not
negligible, the static deflection should be consi-
dered. Therefore, the deflection of a beam can be
expressed as the sum of the initial static deflection

and the dynamic deflection.
w(z,t) =ws(2) +walz,t) (2)

Employing Galerkin’s mode summation method,
the displacement of a beam, w (&, f), may be as-

sumed as
ws(8) =31 A (8) 3)
wa(€,1) =3} q:() $:(&) (4)
w(E ) =3AtaB]s© O

where the dimensionless displacement, £=2z//.
The shape function ¢, (&) is the comparison func-
tion and has the general form of
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$:(&) =Cisin B:&+ C: cos B:&

+ Cs sinh B:6+ Cy cosh B:€ (©)

For the simply supported beam, the shape func-
tion, ¢;(£), may be written as

¢:(€) =sin in€ (7

The eigenvalue fB;=im and the circular natural
frequencyhave w; the following relationship

wi=EL( By ®)

m \ [
From the following equation,

EI 8'ws(&)
[ gt ME 9)

The static deflection, ws(E€),
solution form

has the following

2mglt & 1—(—=1)"
E]7Z'5 n=1 1’!5

ws(&) = sin nz€  (10)

The maximum static deflection § becomes

- 4mgl*
" EIr®

Substituting the solution of Eq. (5) into Eq. (1)
and performing inner product the shape function
of ¢,(&) and rearranging provides the equation
of motion as

Ga(t) +%<n7”>4qn(t) =%Sin nrv*t
2
ml £
+{217w ¢i(t) +ima*q: (¢ }cos imv*t]sin nav*t (12)
4 . i
A ptg
( )¢

—7a Z‘.

{q — (imv*)2q:(t) }sin imv*¢

——5——sin imv*t
oS 1TV t}sm nav*t

where, the dimensionless variables and parameter
are defined as

M s_4mgl' o,
"=l EIr® T
(13)
U:v:m/* a:ﬂza* _ an
° Ver W’ ° C()% » Pn 1)
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Eq. (12) can be expressed in matrix form as

(M () H{Ha(o)}+[C(o)]+{e(0)}
+[K (o) He(n)}={f (D}

(14)
where, the matrix components are
mi; (1) =045+2y sin(imvot) sin (frvor)  (15)

ci; (1) =4y (inmvo)sin(invot) cos (jrver)  (16)

ki (1) =n*m*0;— 21 (imv0) ? sin (imvor) sin (fvor)

. .. . 17
+2ulinas) sin (imvor) cos (jvor) (17)
2| 5 1= (= "
filo) =y {74‘1)0 Z_}ln-sm(nm)or)
T (18)
—aaz.l%cos (nmvor) } sin(i7vo7)

The response of Eq. (14) may be analyzed using
Runge-Kutta integration method.

2.2 Designing fuzzy controller

A general linear control theory is not applica-
ble for the study since it is the time variant system
and has a large non-linearity, as presented in Eq.
(14) . The fuzzy controller is effectively applicable
for the study since the controller is designed by
considering the characteristics of the vibration pro-
duced only, without taking into account the dy-
namic characteristics of the system.

The fundamental structure of the fuzzy control-
ler applied to the simply supported beam carry-
ing a moving mass is shown in Fig. 2.

The system output measured from the laser dis-
placement sensor is transferred to the fuzzy set ele-
ment by fuzzification. The decision making rule

lrawiledos
Eise

3 L.

Normalized Nomalzed Daclsion
Errar Ermmr Uaking
Ruls contral

|Nnrmlllzi!g| Input

Error !I'I:I!l

Input

Fig. 2 Flow-chart of fuzzy diagram

was properly designed by the controller designer
based on the dynamic characteristics of the system
to be studied. It produced the control input by de-
fuzzifying the fuzzified output calculated from the
measured values of the system.

The designer’s experience, the professional’s
knowledge, and the dynamic characteristics of the
system to be controlled are added by the designer
in every process. The advantage of the fuzzy con-
trol theory using this type of design method is to
design the controller easily when the characteris-
tics or trends of the system are known or pre-
dictable to a certain extent, but the mathematical
modelling for control is very difficult and com-
plicated like the one for the study.

The system output obtained from the standard-
ization process was fuzzified by formulating a
fuzzy set. There are various ways to formulate a
fuzzy set. A fuzzy set, which divides the range
from —1 to 1 into 7 equal sections and has a tri-
angular function as a membership function, was
constructed and used for the present study as
shown in Fig. 3.

It is desired to utilize the time response curve of
a typical second-order system to a step input, as
shown in Fig. 4, to determine the fuzzy rule for
designing a fuzzy controller. At the point of “a”,
the control input should be PB (Positive Big)
since the error is NB (Negative Big) and the time
rate of the error is ZE (zero). At the point of “b”,
the control input is desired to be NS (Negative

NB N A NS ZE PS P PB
>< X<
4] 1

-1
Fig. 3 Fuzzy set with triangular membership func-

tion

d

Fig. 4 Typical response of controlled system
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Table 1 Fuzzy rule with 7 elements

fte
NB [NM|Ns | zE | PS | PM | PB
NB|PB | PB|PM|PM| PS | PS | ZE
NM|PB |PM |PM | PS | PS | ZE | NS
NS |PM | PM | PS | PS | ZE | NS | NS
ZE |[PM | PS | PS | ZE | NS | NS |NM
PS | PS | PS | ZE | NS | NS |NM | NM
PM | PS | ZE | NS | NS [NM |NM | NB
PB | ZE | NS | NS |NM |NM | NB | NB

Small) if the error is ZE and the time rate of the
error is PS (Positive Small) . From the same logic,
the control input at the point of “c” is needed to
be PM (Positive Medium). Such a logical rea-
soning may be justified from the point of profes-
sional.

By expanding the logic stated above, the fuzzy
rule may be constructed as shown in Table 1 for
all cases of the fuzzy set consisted of seven ele-
ments.

Where the errors ¢ and & may be defined by the
vibration displacement y, the vibration velocity
¥, and the vibration displacement and the velocity
to be controlled yq and yq, respectively as follows

e=y—ya (19)

e=y—Ya (20)

The normalized error g and ft are defined by the

initial target values y, and v, as
e . e

y, Ue=—"—
Yo ¢ Yo

(21)

The actual control input was obtained by defuz-
zifying the fuzzified control input that was found
based on the fuzzy rule from the normalized error
and the time rate of the error obtained through the
fuzzification process. For the study, the norma-
lized control input was found by employing the
min-max centroid method for the defuzzification.

3. Numerical Analysis Results
of Dynamic Response
to a Moving Mass

In order to produce numerical analysis results
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Fig. 5 Dynamic deflection at the position of moving
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Fig. 6 Dynamic deflection at the position of moving

mass (v,7) for y=0.5

of dynamic response of a beam traversed by a
moving mass, Runge-Kutta integration method
was applied to Eq. (14). The dynamic deflection
caused by a moving mass with constant velocity
was investigated for the study, even though the
dynamic deflection by a moving mass with con-
stant acceleration can also be obtained from Eq.
(14).

Figures 5~7 show the dynamic responses at
the dimensionless position v,z of the moving
mass for the dimensionless velocity of the moving
mass v,=0.1, 0.3, 0.5, 1.0 when the mass ratio of
the beam to the moving mass y=0.1, 0.5, 1.0. Fig.
5 through Fig. 7 present the dynamic deflection
only without including the static deflection.

For y=0.1, i.e. the mass of the beam is 1/10 of
the mass of the moving mass, the first mode of an
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Fig. 7 Dynamic deflection at the position of moving

mass (v,7) for y=1.0

uniform beam was obtained as shown in Fig. 5,
when the velocity of the moving mass is relatively
low as v,=0.1. For v,=0.5, the location of the
maximum deflection shifts to the right end of the
beam, where the moving mass arrives at. And
also, the maximum dynamic deflection increases
in general as the velocity of a moving mass in-
creases. It is, however, observed that the maxi-
mum dynamic deflection decreases at the critical
velocity v¢r. Fig. 6 of y=0.5 through Fig. 7 of
y=1.0 show a similar trend to Fig. 5, but the
difference from Fig. 5 is that the location of the
maximum deflection shifts to the right end of the
beam for all the velocity ranges from v,=0.1 to
the critical velocity as the velocity of a moving
mass increases.

Figures 8~ 10 show the dynamic deflection at
the dimensionless position of the moving mass for
various mass ratios of y when the dimensionless
velocity of a moving mass v,=0.3, 0.5, 1.0. When
the velocity of the moving mass is as slow as v,=
0.1, the maximum dynamic deflection increases
and its location slightly shifts to the right end as
the mass ratio, y, increases as shown in Fig. 8.
And also, the moving mass position for the maxi-
mum deflection is near the mid point of the beam.
For v,=0.5 as shown in Fig. 9, the maximum
dynamic deflection increases and the moving mass
position for the maximum dynamic deflection
shifts to the right end as the mass ratio, 7, in-
creases. For the critical velocity v,=1.0 as shown
in Fig. 10, however, the maximum dynamic de-
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Fig. 10 Dynamic deflection at the position of mov-
ing mass (vo7) for v,=1.0

flection decreases as the mass ratio, 7y, increases
for y>0.7 while the moving mass position for the
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maximum dynamic deflection still shifts to the
right end of the beam.

Figures 11 and 12 present the comparison of
current results on the dynamic deflection and those
from previous studies (references (Olsson, 1991 ;
Esmailzadeh and Ghorashi, 1992; Lin, 1997))
that do not consider as many effects of a moving
mass as the present study does, for y=0.7 and
v0=0.1, 0.5. As can be seen in these figures, the
previous results are somewhat different from the
present results. It is, therefore, believe that all the
effects of a moving mass should be considered
to predict more precisely the dynamic deflection
of a beam traversed by a moving mass. This is

Frasen! work
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Gharasfii
- Qigson

Dynamic defiection (mm)

oo 02 04 06 08 10

Moving mass position (u1)

Fig. 11 Comparison present results with other pre-

vious results for dynamic deflections (v,=

0.5)
0
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------ Gharashi

= -1k
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< .

. ¥=0.7
§ -2t =01
3
-]
o sl
3
g
=
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-5 1 1 1 1

0o 02 04 0.6 08 10

Moving mass position (v,1)

Fig. 12 Comparison present results with other pre-

vious results for dynamic deflections (v,=
0.1)
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confirmed by comparing with the experimental
results presented in the Section 4.

4. Experimental Apparatus
and Experiments

4.1 Experimental apparatus

An experimental apparatus was set up to con-
trol the dynamic deflection and the vibration of a
simply supported uniform beam traversed by a
moving mass as shown in Fig. 13.

The test beam has a groove along its length to
help various sizes of a moving mass to run
smoothly. The details of the test beam are shown
in Table 2.

Steel balls were chosen as moving masses to
reduce the friction with the test beam. The details
of the moving masses are shown in Table 3.

Photo. 1 depicts the experimental set-up for

Isomatic view . (11)

@ LI
@ Guide beam support pole @ Guide beam @) Power
supply @ Amplifier ® FFT analyzer (® Digital oscil-
loscope (D Base Simply-supports (@ Laser displace-
ment meter Laser sensor @ Actuator @2 Test beam

Fig. 13 Experimental set up

Table 2 Details of the test beam

Material Aluminum 6061
Modulus of Elasticity (Gpa) 7.07e+10

Density (kg/m?®) 2700
Mass (g) 283.0

Length (mm) 1000.0

Width (mm) 32.0
Thickness (mm) 4.0
Groove width (mm) 10.0
Groove depth (mm) 2.0
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Table 3 Details of the moving masses

T}./pe of Mass Diameter Materials
moving mass (g) (mm)
M 67.0 25.35
M, 151.0 33.30 Steel
M 228.0 38.05

Photo. 1 Photograph of experimental set-up

the study. A non-contact laser displacement sen-
sor, a sensor controller, and a digital memory os-
cilloscope are installed to measure the dynamic
response of the test beam traversed by a moving
mass. An actuator was built to suppress the dy-
namic deflection and the vibration of the test
beam caused by a moving mass. The actuator is
able to generate the control input by using a voice
coil motor. The actuator is desired to be installed
above and below the test beam to apply the force
from the magnetic field to the beam. However,
the control input is applied through a slender
rod which connects the control actuator to the
bottom of a beam, since the upper part of the
beam should be free from any bar for a moving
mass running.

4.2 Experiments

Experiments are conducted to measure the dy-
namic response first, and then to control the vi-
bration of a beam traversed by a moving mass.
Three different mass ratios and three different
velocity ratios of a moving mass were chosen to
investigate the dynamic response of the system.
The moving mass was released freely at the de-
signated location of the guide beam and traveled

the horizontal part of the guide beam of 210 mm
before entering and eventually passing through
the test beam. The dynamic response was measur-
ed at 385 mm from the entrance of the test beam
by a non-contact laser displacement meter. The
output signal was amplified before being moni-
tored on an oscilloscope.

In order to suppress the dynamic deflection and
vibration of a beam traversed by a moving mass,
the control input is supplied by an actuator as
shown in Fig. 13. The control input in accor-
dance with the fuzzy logic is applied to the system
through a voice coil motor at the same time when
the moving mass enters the test beam. The signal
of the dynamic response was amplified by an am-
plifier and then displayed on an oscilloscope.

Such experiments on the dynamic deflection
and the vibration control were performed in order
for the selected masses and velocities of moving
masses. The details of the moving mass used are
shown in each figure.

4.3 Experimental results and discussion

4.3.1 Experimental results of the dynamic
response and discussion

Figures 14~16 present both the experimental
results and the analytical results from the numer-
ical simulation on the dynamic response of a sim-
ply supported beam traversed by a moving mass.

Figures 14~16 show both analytical and ex-
perimental results on the dynamic response for
three different velocities and magnitudes of a mov-
ing mass (v=1.299(m/s), v=1.880(m/s), v=
2.450(m/s), M=67(g), M=151(g), M=228(g)).

The analytical results agree well with the ex-
perimental results in both the magnitude and the
shape of the dynamic response curve for two ve-
locities (v=1.299(m/s), v=1.880(m/s)) of a mov-
ing mass. For v=2.450(m/s), however, analyt-
ical and experimental results are somewhat dif-
ferent as shown in Fig. 16. It is thought that the
difference becomes greater as a higher velocity of
a moving mass produces a stronger impact at the
joint of the guide beam and the test beam. For
the residual vibration region, two different initial
conditions of which the moving mass leaves the
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beam are believed to make the difference between
two results as explained previously.

4.3.2 Experimental results of vibration con-

trol of a beam

A control using a voice-coil motor was con-
ducted to suppress the amplitude of dynamic res-
ponse and vibration of a beam traversed by a
moving mass. The Matlab simulation was per-
formed to find the best location of the actuator
for the control input.

The results are presented in Figs. 17 and 18.
The simulation was performed by investigating
the response to the disturbance applied to a cer-
tain point for various locations of the actuator.
Two typical simulation results are presented in
Figs. 17 and 18. As shown in these figures, a bet-
ter controlled result was obtained when the ac-
tuator is located at 3/10 of the beam length /.
And also, the node of the third mode is believed
to be a good place for locating the actuator since
it is intended to control up to the second mode for
the study. The position of 3/10 of the beam length
[ from the entrance of the test beam was finally
selected for the location of the actuator. The ex-
periments for control were conducted after locat-
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Fig. 17 Response of uncontrolled and controlled
beam for arbitrary disturbances (actuator
position=//10)
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Fig. 18 Response of uncontrolled and controlled
beam for arbitrary disturbances (actuator
position=3//10)
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ing the actuator at 3//10 based on the simulation
results shown in Figs. 17 and 18.
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controlled beam for y=0.806 and v,=0.132

The experimental results under both uncon-
trolled and controlled conditions are presented in
Figs. 19~21.

The experimental results of the dynamic deflec-
tion in 4.3.1 and the test results for the uncon-
trolled case in 4.3.2 are supposed to be identical
for the same mass ratio y and velocity ratio vo.
But they are different because the stiffness and the
damping provided by the slender rod that con-
nects the actuator and the beam change the dy-
namic characteristics of the system.

Therefore, it is necessary to include the slender
rod to simulate the dynamic deflection curve for
the uncontrolled cases shown in Figs. 19~21. It
is, however, very difficult to develop the mathe-
matical governing equation for such a system.
Thus, the present study focuses on the control
effect only by applying the control input from the
measured dynamic responses of the system with
the control actuator.

For three different velocities (v=1.299 (m/s),
v=1.880(m/s), v=2.450(m/s)), in general, the
dynamic deflections are controlled to be less than
50% of the uncontrolled ones. And also, it does
help to suppress the residual vibration occurred
after the moving mass passes through the beam.

5. Conclusions

The following results were obtained from the
fuzzy control studies on the dynamic response and
the vibration of a simply supported beam travers-
ed by a moving mass with a constant velocity.

Firstly, the position of a moving mass at the
maximum dynamic deflection moves to the right
end of a beam as the mass ratio of a moving mass
y increases for a lower velocity ratio of a moving
mass v, than the critical velocity.

Secondly, the position of a moving mass at the
maximum dynamic deflection moves to the right
end of a beam as the velocity of a moving mass
increases for a given mass ratio of a moving mass
Y.

Thirdly, the experimental results of the dy-
namic deflection of a beam traversed by a moving
mass agree well with the simulation results.

Fourthly, the dynamic deflection and the resi-
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dual vibration of a beam traversed by a moving
mass were successfully reduced more than 50%
through the fuzzy control.
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